When two or more events are so related that the occurrence of one does not affect the possibility of the occurrence of remaining events it is called?

Life is full of random events!

You need to get a "feel" for them to be a smart and successful person.

The toss of a coin, throw of a dice and lottery draws are all examples of random events.

Events

When we say "Event" we mean one (or more) outcomes.

Example Events:

  • Getting a Tail when tossing a coin is an event
  • Rolling a "5" is an event.

An event can include several outcomes:

  • Choosing a "King" from a deck of cards (any of the 4 Kings) is also an event
  • Rolling an "even number" (2, 4 or 6) is an event

Events can be:

  • Independent (each event is not affected by other events),
  • Dependent (also called "Conditional", where an event is affected by other events)
  • Mutually Exclusive (events can't happen at the same time)

Let's look at each of those types.

Independent Events

Events can be "Independent", meaning each event is not affected by any other events.

This is an important idea! A coin does not "know" that it came up heads before ... each toss of a coin is a perfect isolated thing.

Example: You toss a coin three times and it comes up "Heads" each time ... what is the chance that the next toss will also be a "Head"?

The chance is simply 1/2, or 50%, just like ANY OTHER toss of the coin.

What it did in the past will not affect the current toss!

Some people think "it is overdue for a Tail", but really truly the next toss of the coin is totally independent of any previous tosses.

Saying "a Tail is due", or "just one more go, my luck is due" is called The Gambler's Fallacy

Learn more at Independent Events.

Dependent Events

But some events can be "dependent" ... which means they can be affected by previous events.

Example: Drawing 2 Cards from a Deck

After taking one card from the deck there are less cards available, so the probabilities change!

Let's look at the chances of getting a King.

For the 1st card the chance of drawing a King is 4 out of 52

But for the 2nd card:

  • If the 1st card was a King, then the 2nd card is less likely to be a King, as only 3 of the 51 cards left are Kings.
  • If the 1st card was not a King, then the 2nd card is slightly more likely to be a King, as 4 of the 51 cards left are King.

This is because we are removing cards from the deck.

Replacement: When we put each card back after drawing it the chances don't change, as the events are independent.

Without Replacement: The chances will change, and the events are dependent.

You can learn more at Dependent Events: Conditional Probability

Tree Diagrams

When we have Dependent Events it helps to make a "Tree Diagram"

Example: Soccer Game

You are off to soccer, and love being the Goalkeeper, but that depends who is the Coach today:

  • with Coach Sam your probability of being Goalkeeper is 0.5
  • with Coach Alex your probability of being Goalkeeper is 0.3

Sam is Coach more often ... about 6 of every 10 games (a probability of 0.6).

Let's build the Tree Diagram!

Start with the Coaches. We know 0.6 for Sam, so it must be 0.4 for Alex (the probabilities must add to 1):

Then fill out the branches for Sam (0.5 Yes and 0.5 No), and then for Alex (0.3 Yes and 0.7 No):

Now it is neatly laid out we can calculate probabilities (read more at Tree Diagrams).

Mutually Exclusive

Mutually Exclusive means we can't get both events at the same time.

It is either one or the other, but not both

Examples:

  • Turning left or right are Mutually Exclusive (you can't do both at the same time)
  • Heads and Tails are Mutually Exclusive
  • Kings and Aces are Mutually Exclusive

What isn't Mutually Exclusive

  • Kings and Hearts are not Mutually Exclusive, because we can have a King of Hearts!

Like here:

Read more at Mutually Exclusive Events

Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent[1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds. Similarly, two random variables are independent if the realization of one does not affect the probability distribution of the other.

When dealing with collections of more than two events, two notions of independence need to be distinguished. The events are called pairwise independent if any two events in the collection are independent of each other, while mutual independence (or collective independence) of events means, informally speaking, that each event is independent of any combination of other events in the collection. A similar notion exists for collections of random variables. Mutual independence implies pairwise independence, but not the other way around. In the standard literature of probability theory, statistics, and stochastic processes, independence without further qualification usually refers to mutual independence.

Definition[edit]

For events[edit]

Two events[edit]

Two events and

are independent (often written as or , where the latter symbol often is also used for conditional independence) if and only if their joint probability equals the product of their probabilities:[2]: p. 29 [3]: p. 10

(Eq.1)

It indicates that two independent events and have common elements in their sample space so that they are not mutually exclusive (mutually exclusive iff ). Why this defines independence is made clear by rewriting with conditional probabilities as the probability at which the event occurs provided that the event has or is assumed to have occurred:

and similarly

Thus, the occurrence of does not affect the probability of , and vice versa. In other words, and are independent to each other. Although the derived expressions may seem more intuitive, they are not the preferred definition, as the conditional probabilities may be undefined if or are 0. Furthermore, the preferred definition makes clear by symmetry that when is independent of , is also independent of .

Log probability and information content[edit]

Stated in terms of log probability, two events are independent if and only if the log probability of the joint event is the sum of the log probability of the individual events:

In information theory, negative log probability is interpreted as information content, and thus two events are independent if and only if the information content of the combined event equals the sum of information content of the individual events:

See Information content § Additivity of independent events for details.

Odds[edit]

Stated in terms of odds, two events are independent if and only if the odds ratio of and is unity (1). Analogously with probability, this is equivalent to the conditional odds being equal to the unconditional odds:

or to the odds of one event, given the other event, being the same as the odds of the event, given the other event not occurring:

The odds ratio can be defined as

or symmetrically for odds of given , and thus is 1 if and only if the events are independent.

More than two events[edit]

A finite set of events is pairwise independent if every pair of events is independent[4]—that is, if and only if for all distinct pairs of indices ,

(Eq.2)

A finite set of events is mutually independent if every event is independent of any intersection of the other events[4][3]: p. 11 —that is, if and only if for every and for every k indices ,

(Eq.3)

This is called the multiplication rule for independent events. Note that it is not a single condition involving only the product of all the probabilities of all single events; it must hold true for all subsets of events.

For more than two events, a mutually independent set of events is (by definition) pairwise independent; but the converse is not necessarily true.[2]: p. 30

For real valued random variables[edit]

Two random variables[edit]

Two random variables and are independent if and only if (iff) the elements of the π-system generated by them are independent; that is to say, for every and , the events and are independent events (as defined above in Eq.1). That is, and with cumulative distribution functions and , are independent iff the combined random variable has a joint cumulative distribution function[3]: p. 15

(Eq.4)

or equivalently, if the probability densities and and the joint probability density exist,

More than two random variables[edit]

A finite set of random variables is pairwise independent if and only if every pair of random variables is independent. Even if the set of random variables is pairwise independent, it is not necessarily mutually independent as defined next.

A finite set of random variables is mutually independent if and only if for any sequence of numbers , the events are mutually independent events (as defined above in Eq.3). This is equivalent to the following condition on the joint cumulative distribution function . A finite set of random variables is mutually independent if and only if[3]: p. 16

(Eq.5)

Notice that it is not necessary here to require that the probability distribution factorizes for all possible -element subsets as in the case for events. This is not required because e.g. implies .

The measure-theoretically inclined may prefer to substitute events for events in the above definition, where is any Borel set. That definition is exactly equivalent to the one above when the values of the random variables are real numbers. It has the advantage of working also for complex-valued random variables or for random variables taking values in any measurable space (which includes topological spaces endowed by appropriate σ-algebras).

For real valued random vectors[edit]

Two random vectors and are called independent if[5]: p. 187

(Eq.6)

where and denote the cumulative distribution functions of and and denotes their joint cumulative distribution function. Independence of and is often denoted by . Written component-wise, and are called independent if

For stochastic processes[edit]

For one stochastic process[edit]

The definition of independence may be extended from random vectors to a stochastic process. Therefore, it is required for an independent stochastic process that the random variables obtained by sampling the process at any times are independent random variables for any .[6]: p. 163

Formally, a stochastic process is called independent, if and only if for all and for all

(Eq.7)

where . Independence of a stochastic process is a property within a stochastic process, not between two stochastic processes.

For two stochastic processes[edit]

Independence of two stochastic processes is a property between two stochastic processes and that are defined on the same probability space . Formally, two stochastic processes and are said to be independent if for all and for all , the random vectors and are independent,[7]: p. 515 i.e. if

(Eq.8)

Independent σ-algebras[edit]

The definitions above (Eq.1 and Eq.2) are both generalized by the following definition of independence for σ-algebras. Let be a probability space and let and be two sub-σ-algebras of . and are said to be independent if, whenever and ,

Likewise, a finite family of σ-algebras , where is an index set, is said to be independent if and only if

and an infinite family of σ-algebras is said to be independent if all its finite subfamilies are independent.

The new definition relates to the previous ones very directly:

  • Two events are independent (in the old sense) if and only if the σ-algebras that they generate are independent (in the new sense). The σ-algebra generated by an event is, by definition,

Using this definition, it is easy to show that if and are random variables and is constant, then and are independent, since the σ-algebra generated by a constant random variable is the trivial σ-algebra . Probability zero events cannot affect independence so independence also holds if is only Pr-almost surely constant.

Properties[edit]

Self-independence[edit]

Note that an event is independent of itself if and only if

Thus an event is independent of itself if and only if it almost surely occurs or its complement almost surely occurs; this fact is useful when proving zero–one laws.[8]

Expectation and covariance[edit]

If and are independent random variables, then the expectation operator has the property

and the covariance is zero, as follows from

The converse does not hold: if two random variables have a covariance of 0 they still may be not independent. See uncorrelated.

Similarly for two stochastic processes and : If they are independent, then they are uncorrelated.[9]: p. 151

Characteristic function[edit]

Two random variables and are independent if and only if the characteristic function of the random vector satisfies

In particular the characteristic function of their sum is the product of their marginal characteristic functions:

though the reverse implication is not true. Random variables that satisfy the latter condition are called subindependent.

Examples[edit]

Rolling dice[edit]

The event of getting a 6 the first time a die is rolled and the event of getting a 6 the second time are independent. By contrast, the event of getting a 6 the first time a die is rolled and the event that the sum of the numbers seen on the first and second trial is 8 are not independent.

Drawing cards[edit]

If two cards are drawn with replacement from a deck of cards, the event of drawing a red card on the first trial and that of drawing a red card on the second trial are independent. By contrast, if two cards are drawn without replacement from a deck of cards, the event of drawing a red card on the first trial and that of drawing a red card on the second trial are not independent, because a deck that has had a red card removed has proportionately fewer red cards.

Pairwise and mutual independence[edit]

Pairwise independent, but not mutually independent, events.

Mutually independent events.

Consider the two probability spaces shown. In both cases, and . The random variables in the first space are pairwise independent because , , and ; but the three random variables are not mutually independent. The random variables in the second space are both pairwise independent and mutually independent. To illustrate the difference, consider conditioning on two events. In the pairwise independent case, although any one event is independent of each of the other two individually, it is not independent of the intersection of the other two:

In the mutually independent case, however,

Triple-independence but no pairwise-independence[edit]

It is possible to create a three-event example in which

and yet no two of the three events are pairwise independent (and hence the set of events are not mutually independent).[10] This example shows that mutual independence involves requirements on the products of probabilities of all combinations of events, not just the single events as in this example.

Conditional independence[edit]

For events[edit]

The events and are conditionally independent given an event when

.

For random variables[edit]

Intuitively, two random variables and are conditionally independent given if, once is known, the value of does not add any additional information about . For instance, two measurements and of the same underlying quantity are not independent, but they are conditionally independent given (unless the errors in the two measurements are somehow connected).

The formal definition of conditional independence is based on the idea of conditional distributions. If , , and are discrete random variables, then we define and to be conditionally independent given if

for all , and such that . On the other hand, if the random variables are continuous and have a joint probability density function , then and are conditionally independent given if

for all real numbers , and such that .

If discrete and are conditionally independent given , then

for any , and with . That is, the conditional distribution for given and is the same as that given alone. A similar equation holds for the conditional probability density functions in the continuous case.

Independence can be seen as a special kind of conditional independence, since probability can be seen as a kind of conditional probability given no events.

See also[edit]

  • Copula (statistics)
  • Independent and identically distributed random variables
  • Mutually exclusive events
  • Pairwise independent events
  • Subindependence
  • Conditional independence
  • Normally distributed and uncorrelated does not imply independent
  • Mean dependence

References[edit]

  1. ^ Russell, Stuart; Norvig, Peter (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. p. 478. ISBN 0-13-790395-2.
  2. ^ a b Florescu, Ionut (2014). Probability and Stochastic Processes. Wiley. ISBN 978-0-470-62455-5.
  3. ^ a b c d Gallager, Robert G. (2013). Stochastic Processes Theory for Applications. Cambridge University Press. ISBN 978-1-107-03975-9.
  4. ^ a b Feller, W (1971). "Stochastic Independence". An Introduction to Probability Theory and Its Applications. Wiley.
  5. ^ Papoulis, Athanasios (1991). Probability, Random Variables and Stochastic Processes. MCGraw Hill. ISBN 0-07-048477-5.
  6. ^ Hwei, Piao (1997). Theory and Problems of Probability, Random Variables, and Random Processes. McGraw-Hill. ISBN 0-07-030644-3.
  7. ^ Amos Lapidoth (8 February 2017). A Foundation in Digital Communication. Cambridge University Press. ISBN 978-1-107-17732-1.
  8. ^ Durrett, Richard (1996). Probability: theory and examples (Second ed.). page 62
  9. ^ Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3.
  10. ^ George, Glyn, "Testing for the independence of three events," Mathematical Gazette 88, November 2004, 568. PDF

External links[edit]

  • Media related to Independence (probability theory) at Wikimedia Commons

What are two events called when the occurrence of one event does not affect the occurrence of the other event?

Two events are independent if the occurrence of one does not affect the probability of the other occurring.

When two events do not affect each other the events are called?

Two events are said to be independent events if the probability of one event does not affect the probability of another event. If two events are mutually exclusive, they are not independent. Also, independent events cannot be mutually exclusive.

When the occurrence of one event has no effect on the occurrence of the other?

If the occurrence of one event has no effect on the likelihood of another event, the two events are said to be independent.

What are events called that do not affect one another?

Independent events do not affect one another and do not increase or decrease the probability of another event happening.

Chủ đề