Hướng dẫn giải bài tập toán lớp 12 bài 1 năm 2024

\(y' = 0 \Leftrightarrow 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - 1\\ x = 1 \end{array} \right.\)

Bảng biến thiên:

.png)

Kết luận:

Hàm số đồng biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\)

Hàm số nghịch biến trên các khoảng \(\left( {- \infty;-1 } \right)\) và \((0;1).\)

  1. \(y=\frac{x+1}{x-1}\)

Xét hàm số \(y=\frac{x+1}{x-1}\).

TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\)

\(y' = \frac{{ - 2}}{{{{(x - 1)}^2}}} > 0,\forall \ne 1\)

Bảng biến thiên:

Hướng dẫn giải bài tập toán lớp 12 bài 1 năm 2024

Kết luận: Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( { 1;+ \infty } \right)\).

2.2. Dạng 2: Tìm tham số để hàm số đơn điệu trên một miền

Ví dụ 2:

Tìm tất cả các giá trị thực của tham số m để hàm số \(y=x^3+3x^2+mx+m\) đồng biến trên \(\mathbb{R}\).

Lời giải:

Xét hàm số \(y=x^3+3x^2+mx+m\)

TXĐ: \(D=\mathbb{R}\)

\(y' = 3{x^2} + 6x + m\)

Hàm số đồng biến trên \(\mathbb{R}\) khi \(y' \ge 0,\forall x \in\mathbb{R} \Leftrightarrow \left\{ \begin{array}{l} \Delta ' \le 0\\ a = 1 > 0 \end{array} \right. \Leftrightarrow 9 - 3m < 0 \Leftrightarrow m \ge 3\).

Kết luận: với \(m\geq 3\) thì hàm số đồng biến trên \(\mathbb{R}\).

Ví dụ 3:

Tìm tất cả các giá trị thực của tham số m để hàm số \(y = 2x^3 - 3(2m + 1){x^2} + 6m(m + 1)x + 1\) đồng biến trong khoảng \((2; + \infty )\).

Lời giải:

Xét hàm số \(y = 2x^3 - 3(2m + 1){x^2} + 6m(m + 1)x + 1\).

TXĐ: \(D=\mathbb{R}\)

\(y' = 6{x^2} - 6(2m + 1)x + 6m(m + 1)\)

\(\Delta = {(2m + 1)^2} - 4({m^2} + m) = 1 > 0\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} x = m\\ x = m + 1 \end{array} \right.\)

.png)

Hàm số đồng biến trong các khoảng \(( - \infty ;m),\,\,(m + 1; + \infty )\).

Kết luận: Do đó hàm số đồng biến trong khoảng \((2; + \infty )\) khi \(m + 1 \le 2 \Leftrightarrow m \le 1.\)

Tổng hợp đề thi giữa kì 2 lớp 12 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính diện tích hình phẳng giới hạn bởi các đường:

LG a

  1. \(y={x^2},y =x + 2\);

Phương pháp giải:

Cho hai hàm số \(y = f\left( x \right);\;\;y = g\left( x \right)\) liên tục trên đoạn \(\left[ {a;\;b} \right]\). Gọi \(D\) là hình phẳng được giới hạn bởi đồ thị hai hàm số trên và các đường thẳng \(x = a;\;\;x = b\). Khi đó diện tích của hình phẳng \(D\) được tính bởi công thức: \({S_D} = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\)

Lời giải chi tiết:

Phương trình hoành độ giao điểm của hai đồ thị là: \(f(x) = x^2-x -2 =0 \) \(⇔(x+1)(x-2)=0 \) \( ⇔\left[ \begin{array}{l}x + 1=0\\x - 2=0\end{array} \right. \) \( ⇔ \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right..\)

Diện tích hình phẳng cần tìm là:

\(S=\int_{-1}{2}\left |x{2}- x- 2 \right |dx\) \( = \left | \int_{-1}{2}\left (x{2}- x- 2 \right ) dx \right |\)

\(=\left |\dfrac{x^{3}}{3}-\dfrac{x^{2}}{2}-2x|_{-1}^{2} \right |\) \(=\left |\dfrac{8}{3}-2-4-(-\dfrac{1}{3}-\dfrac{1}{2}+2) \right |\) \(=\dfrac{9}{2}\) (đvdt).

Quảng cáo

Hướng dẫn giải bài tập toán lớp 12 bài 1 năm 2024

LG b

  1. \(y = |lnx|, y = 1\);

Lời giải chi tiết:

Phương trình hoành độ giao điểm của hai đồ thị là:

\(f(x) = 1 - |\ln x| = 0 ⇔ \ln x = ± 1\) \(⇔\left[ \begin{array}{l}x = e\\x = \dfrac{1}{e}\end{array} \right..\)

Ta có: \(y = |\ln x| = \ln x\) nếu \(\ln x ≥ 0\), tức là \(x ≥ 1\).

hoặc \(y = |\ln x| = - \ln x\) nếu \(\ln x < 0\), tức là \(0 < x < 1\).

Dựa vào đồ thị hàm số vẽ ở hình trên ta có diện tích cần tìm là :

\(S=\int_{\frac{1}{e}}{e}|1- |\ln x||dx \) \(=\int_{\frac{1}{e}}{1}(1+\ln x)dx\) \( +\int_{1}^{e}(1-\ln x)dx\)

\(= x|_{\frac{1}{e}}{1}+\int_{\frac{1}{e}}{1}\ln xdx +x|_{1}{e}-\int_{1}{e}\ln xdx\)

\( = \left( {1 - \dfrac{1}{e}} \right) + \int\limits_{1/e}^1 {\ln xdx} \) \( + \left( {e - 1} \right) - \int\limits_1^e {\ln xdx} \)

\(=-\dfrac{1}{e}+e+\int_{\frac{1}{e}}{1}\ln x dx-\int_{1}{e}\ln xdx\)

Tính \(\int {\ln xdx} \) ta có:

Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = x\end{array} \right.\)

Do đó \(∫\ln xdx = x\ln x - ∫dx \) \(= x\ln x – x + C\), thay vào trên ta được:

\(S=e-\dfrac{1}{e}+(x\ln x-x)|_{\frac{1}{e}}{1}\) \(- (x\ln x-x)|_{1}{e}\) \( = e - \dfrac{1}{e}\)\( + \left[ {\left( {1\ln 1 - 1} \right) - \left( {\dfrac{1}{e}\ln \dfrac{1}{e} - \dfrac{1}{e}} \right)} \right]\) \( - \left[ {\left( {e\ln e - e} \right) - \left( {1\ln 1 - 1} \right)} \right]\)

\( = e - \dfrac{1}{e}\)\( + \left[ {\left( {0 - 1} \right) - \left( {\dfrac{1}{e}.\left( { - 1} \right) - \dfrac{1}{e}} \right)} \right]\) \( - \left[ {\left( {e.1 - e} \right) - \left( {0 - 1} \right)} \right]\)

\( = e - \dfrac{1}{e} + \left( { - 1 + \dfrac{2}{e}} \right) - \left( {0 + 1} \right)\) \( = e - \dfrac{1}{e} - 1 + \dfrac{2}{e} - 1\)

\(=e+\dfrac{1}{e}-2\) (đvdt).

LG c

  1. \(y = {\left( x-6 \right)}^2,y = 6x-{x^2}\)

Lời giải chi tiết:

Phương trình hoành độ giao điểm của hai đồ thị là:

\(f\left( x \right) =6x-{x^2}-{\left( {x -6} \right)^2} \) \(= - 2({x^2}-9x+ 18)=0\)

\( \Leftrightarrow {x^2} - 9x + 18 = 0\) \(⇔ (x-3)(x-6)=0\) \(⇔ \left[ \begin{array}{l}x - 3=0\\x - 6=0\end{array} \right.\) \(⇔\left[ \begin{array}{l}x = 3\\x = 6\end{array} \right..\)

Diện tích cần tìm là:

\(S=\int_{3}{6}|-2(x{2}-9x+18)|dx\) \(=|2\int_{3}{6}(x{2}-9x+18)dx|\)

\(=\left |2(\dfrac{x^{3}}{3}-\dfrac{9}{2}x^{2}+18x)|_{3}^{6} \right | \)

\( = |2\left( {\dfrac{{{6^3}}}{3} - \dfrac{9}{2}{{.6}^2} + 18.6} \right)\) \( - 2\left( {\dfrac{{{3^3}}}{3} - \dfrac{9}{2}{{.3}^2} + 18.3} \right)|\)