So sánh acid lactic và acid 3 hydroxyl propanoic năm 2024

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

So sánh acid lactic và acid 3 hydroxyl propanoic năm 2024
verify (what is
So sánh acid lactic và acid 3 hydroxyl propanoic năm 2024
So sánh acid lactic và acid 3 hydroxyl propanoic năm 2024
?)

3-Hydroxypropionic acid is a carboxylic acid, specifically a beta hydroxy acid. It is an acidic viscous liquid with a pKa of 4.9. It is very soluble in water, soluble in ethanol and diethyl ether. Upon distillation, it dehydrates to form acrylic acid, and is occasionally called hydracrylic acid

3-Hydroxypropionic acid is used in the industrial production of various chemicals such as acrylates.

Synthesis[edit]

3-Hydroxypropionic acid can be obtained by base-induced hydration of acrylic acid followed by reacidification. Another synthesis involves cyanation of ethylene chlorohydrin followed by hydrolysis of the resulting nitrile. Hydrolysis of propiolactone is yet another route.

Potential applications[edit]

The polyester poly(3-hydroxypropionic acid) is a biodegradable polymer. The method combines the high-molecular weight and control aspects of ring-opening polymerization with the commercial availability of the beta hydroxy acid, 3-hydroxypropionic acid which is abbreviated as 3-HP. Since 3-HPA can be derived from biological sources, the resulting material, poly(3-hydroxypropionic acid) or P(3-HPA), is biorenewable.

Genetically encoded 3-hydroxypropionic acid inducible system[edit]

3-Hydroxypropionic acid can be produced by engineered microbes.

A genetically encoded 3-hydroxypropionic acid inducible system has been characterized in bacteria demonstrating that such system in combination with fluorescent reporter protein can be utilized as a biosensor to measure intracellular and extracellular 3-HP concentrations by fluorescence output.

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.

Trừ khi có ghi chú khác, dữ liệu được cung cấp cho các vật liệu trong trạng thái tiêu chuẩn của chúng (ở 25 °C [77 °F], 100 kPa).

Acid lactic hay acid sữa là một hợp chất hóa học đóng vai trò rất quan trọng trong nhiều quá trình sinh hóa và lần đầu được phân tách vào năm 1780 bởi nhà hóa học Thụy Điển Carl Wilhelm Scheele. Acid lactic là một acid carboxylic với công thức hóa học C3H6O3. Nó có một nhóm hydroxyl đứng gần nhóm carboxyl khiến nó là một acid alpha hydroxy (AHA). Trong dung dịch, nó có thể mất một proton từ nhóm acid, tạo ra ion lactat CH3CH(OH)COO−.

Khi vận động mạnh và cơ thể không cung cấp đủ oxy nữa, thì cơ thể sẽ thoái hóa glucose từ các tế bào để biến thành acid lactic. Quá trình này sinh ra 150kJ năng lượng:

Phương trình:

C6H12O6 --> 2C3H6O3 + 150kJ

Acid lactic là chất chính tạo ra cảm giác mỏi ở cơ bắp, đây là sản phẩm của quá trình oxy hóa.

Acid lactic được lên men từ s­ữa, sản phẩm này còn có tên gọi sữa chua hay còn gọi là yaourt (hoặc yogurt). Công dụng là kích thích tiêu hóa, đẹp da. Mỗi tối trước khi ngủ, dùng yaourt thoa lên mặt trong vòng 15 phút sẽ làm trắng da, mịn da, da hồng hào. Trong yogurt có nhiều lợi khuẩn giúp cải thiện quá trình tiêu hóa thức ăn và trao đổi chất.

Trong dược phẩm, người ta dùng acid lactic trong các sản phẩm dành cho các bé chán ăn, tiêu hóa kém.

Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes

Antonius J A van Maris et al. Metab Eng. 2004 Oct.

Abstract

Lactic acid and 3-hydroxypropanoic acid are industrially relevant microbial products. This paper reviews the current knowledge on export of these compounds from microbial cells and presents a theoretical analysis of the bioenergetics of different export mechanisms. It is concluded that export can be a key constraint in industrial production, especially under the conditions of high product concentration and low extracellular pH that are optimal for recovery of the undissociated acids. Under these conditions, the metabolic energy requirement for product export may equal or exceed the metabolic energy yield from product formation. Consequently, prolonged product formation at low pH and at high product concentrations requires the involvement of alternative, ATP-yielding pathways to sustain growth and maintenance processes, thereby reducing the product yield on substrate. Research on export mechanisms and energetics should therefore be an integral part of the development of microbial production processes for these and other weak acids.

PubMed Disclaimer

Similar articles

  • Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Detman A, Mielecki D, Chojnacka A, Salamon A, Błaszczyk MK, Sikora A. Detman A, et al. Microb Cell Fact. 2019 Feb 13;18(1):36. doi: 10.1186/s12934-019-1085-1. Microb Cell Fact. 2019. PMID: 30760264 Free PMC article.
  • Upflow anaerobic sludge blanket reactor--a review. Bal AS, Dhagat NN. Bal AS, et al. Indian J Environ Health. 2001 Apr;43(2):1-82. Indian J Environ Health. 2001. PMID: 12397675 Review.
  • Process engineering for microbial production of 3-hydroxypropionic acid. de Fouchécour F, Sánchez-Castañeda AK, Saulou-Bérion C, Spinnler HÉ. de Fouchécour F, et al. Biotechnol Adv. 2018 Jul-Aug;36(4):1207-1222. doi: 10.1016/j.biotechadv.2018.03.020. Epub 2018 Mar 31. Biotechnol Adv. 2018. PMID: 29608950 Review.
  • Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. Shi S, Kang L, Lee YY. Shi S, et al. Appl Biochem Biotechnol. 2015 Mar;175(5):2741-54. doi: 10.1007/s12010-014-1451-8. Epub 2015 Jan 6. Appl Biochem Biotechnol. 2015. PMID: 25561054
  • Recent advancements in lactic acid production - a review. Eş I, Mousavi Khaneghah A, Barba FJ, Saraiva JA, Sant'Ana AS, Hashemi SMB. Eş I, et al. Food Res Int. 2018 May;107:763-770. doi: 10.1016/j.foodres.2018.01.001. Epub 2018 Jan 4. Food Res Int. 2018. PMID: 29580545 Review. No abstract available.

Cited by

  • Engineering the synthetic β-alanine pathway in Komagataella phaffii for conversion of methanol into 3-hydroxypropionic acid. Àvila-Cabré S, Pérez-Trujillo M, Albiol J, Ferrer P. Àvila-Cabré S, et al. Microb Cell Fact. 2023 Nov 17;22(1):237. doi: 10.1186/s12934-023-02241-9. Microb Cell Fact. 2023. PMID: 37978380 Free PMC article.
  • High throughput 13C-metabolic flux analysis of 3-hydroxypropionic acid producing Pichia pastoris reveals limited availability of acetyl-CoA and ATP due to tight control of the glycolytic flux. Fina A, Millard P, Albiol J, Ferrer P, Heux S. Fina A, et al. Microb Cell Fact. 2023 Jun 29;22(1):117. doi: 10.1186/s12934-023-02123-0. Microb Cell Fact. 2023. PMID: 37380999 Free PMC article.
  • Engineering Flocculation for Improved Tolerance and Production of d-Lactic Acid in Pichia pastoris. Sae-Tang K, Bumrungtham P, Mhuantong W, Champreda V, Tanapongpipat S, Zhao XQ, Liu CG, Runguphan W. Sae-Tang K, et al. J Fungi (Basel). 2023 Mar 27;9(4):409. doi: 10.3390/jof9040409. J Fungi (Basel). 2023. PMID: 37108864 Free PMC article.
  • The Dicarboxylate Transporters from the AceTr Family and Dct-02 Oppositely Affect Succinic Acid Production in S. cerevisiae. Rendulić T, Mendonça Bahia F, Soares-Silva I, Nevoigt E, Casal M. Rendulić T, et al. J Fungi (Basel). 2022 Aug 6;8(8):822. doi: 10.3390/jof8080822. J Fungi (Basel). 2022. PMID: 36012810 Free PMC article.

Combining Metabolic Engineering and Multiplexed Screening Methods for 3-Hydroxypropionic Acid Production in Pichia pastoris.