What is the probability of the card being an ace given that it is a non

Exercise: What is the probability that two cards drawn from the deck are the same suit? Different suits? Answer these questions for both the case of choosing the cards with and without replacement.

The above calculations have used the approach of conditional probabilities. This can be extended to other problems such as the probability that five cards drawn from a deck without replacement are of the same suit (a flush). The first card designates the suit, 12/51 of that suit remain in the deck, if the first two cards are of the same suit 11/50 of the same suit remain in the deck, ... . this line of reasoning extends to give that the probability of being dealt a flush is 1 × 12/51 × 11/50 × 10/49 × 9/48. However it is much more difficult to use conditional probabilities to calculate the probability of a full house (two of one kind and three of another kind).An aternative way to calculate the probability of being dealt a flush is to count the number of different hands which are flushes, and divide that by the total number of different hands. There are C(52,5) different hands that can be dealt from a deck. There are C(13,5) different flushes in each suit. Hence the probability of being dealt a flush is (4 × C(13,5))/C(52,5) = (12 × 11 × 10 × 9)/(51 × 50 × 49 × 48) as found above. The same reasoning can be used to calculate the probability of a full house: Ther are 13 choices for the denomination there are three of, which leaves 12 denominations for the pair; There are C(4,3) ways to choose the the cards within the denomination of the treesome and C(4,2) ways to choose the pair from the denomination of the twosome. Hence the probability of a full house is (13 × 12 × C(4,3) × C(4,2))/C(52,5).

Competencies: Calculate the probability that four cards dealt from a deck without replacement are of different suits, both by conditional probability and by counting arguments.

Reflection: Which problems are more easily done as conditional probability and which problems are more easily done by counting arguments.

Challenge: Calculate the probability that three cards dealt from a deck without replacement are of different suits, both by conditional probability and by counting arguments.

In the previous section we computed the probabilities of events that were independent of each other. We saw that getting a certain outcome from rolling a die had no influence on the outcome from flipping a coin, even though we were computing a probability based on doing them at the same time.

In this section, we will consider events that are dependent on each other, called conditional probabilities.

Conditional Probability

The probability the event B occurs, given that event A has happened, is represented as

P(B | A)

This is read as “the probability of B given A”

For example, if you draw a card from a deck, then the sample space for the next card drawn has changed, because you are now working with a deck of 51 cards. In the following example we will show you how the computations for events like this are different from the computations we did in the last section.

example

What is the probability that two cards drawn at random from a deck of playing cards will both be aces?

Show Solution

It might seem that you could use the formula for the probability of two independent events and simply multiply [latex]\frac{4}{52}\cdot\frac{4}{52}=\frac{1}{169}[/latex]. This would be incorrect, however, because the two events are not independent. If the first card drawn is an ace, then the probability that the second card is also an ace would be lower because there would only be three aces left in the deck.

Once the first card chosen is an ace, the probability that the second card chosen is also an ace is called the conditional probability of drawing an ace. In this case the “condition” is that the first card is an ace. Symbolically, we write this as:

P(ace on second draw | an ace on the first draw).

The vertical bar “|” is read as “given,” so the above expression is short for “The probability that an ace is drawn on the second draw given that an ace was drawn on the first draw.” What is this probability? After an ace is drawn on the first draw, there are 3 aces out of 51 total cards left. This means that the conditional probability of drawing an ace after one ace has already been drawn is [latex]\frac{3}{51}=\frac{1}{17}[/latex].

Thus, the probability of both cards being aces is [latex]\frac{4}{52}\cdot\frac{3}{51}=\frac{12}{2652}=\frac{1}{221}[/latex].

Conditional Probability Formula

If Events A and B are not independent, then

P(A and B) = P(A) · P(B | A)

example

If you pull 2 cards out of a deck, what is the probability that both are spades?

Show Solution

The probability that the first card is a spade is [latex]\frac{13}{52}[/latex].

The probability that the second card is a spade, given the first was a spade, is [latex]\frac{12}{51}[/latex], since there is one less spade in the deck, and one less total cards.

The probability that both cards are spades is [latex]\frac{13}{52}\cdot\frac{12}{51}=\frac{156}{2652}\approx0.0588[/latex]

Try It

Example

The table below shows the number of survey subjects who have received and not received a speeding ticket in the last year, and the color of their car. Find the probability that a randomly chosen person:

  1. has a speeding ticket given they have a red car
  2. has a red car given they have a speeding ticket
Speeding ticketNo speeding ticketTotalRed car15135150Not red car45470515Total60605665

Show Solution

  1. Since we know the person has a red car, we are only considering the 150 people in the first row of the table. Of those, 15 have a speeding ticket, so P(ticket | red car) = [latex]\frac{15}{150}=\frac{1}{10}=0.1[/latex]
  2. Since we know the person has a speeding ticket, we are only considering the 60 people in the first column of the table. Of those, 15 have a red car, so P(red car | ticket) = [latex]\frac{15}{60}=\frac{1}{4}=0.25[/latex].

Notice from the last example that P(B | A) is not equal to P(A | B).

These kinds of conditional probabilities are what insurance companies use to determine your insurance rates. They look at the conditional probability of you having accident, given your age, your car, your car color, your driving history, etc., and price your policy based on that likelihood.

View more about conditional probability in the following video.

 

Example

If you draw two cards from a deck, what is the probability that you will get the Ace of Diamonds and a black card?

Show Solution

You can satisfy this condition by having Case A or Case B, as follows:

Case A) you can get the Ace of Diamonds first and then a black card or

Case B) you can get a black card first and then the Ace of Diamonds.

Let’s calculate the probability of Case A. The probability that the first card is the Ace of Diamonds is [latex]\frac{1}{52}[/latex]. The probability that the second card is black given that the first card is the Ace of Diamonds is [latex]\frac{26}{51}[/latex] because 26 of the remaining 51 cards are black. The probability is therefore [latex]\frac{1}{52}\cdot\frac{26}{51}=\frac{1}{102}[/latex].

Now for Case B: the probability that the first card is black is [latex]\frac{26}{52}=\frac{1}{2}[/latex]. The probability that the second card is the Ace of Diamonds given that the first card is black is [latex]\frac{1}{51}[/latex]. The probability of Case B is therefore [latex]\frac{1}{2}\cdot\frac{1}{51}=\frac{1}{102}[/latex], the same as the probability of Case 1.

Recall that the probability of A or B is P(A) + P(B) – P(A and B). In this problem, P(A and B) = 0 since the first card cannot be the Ace of Diamonds and be a black card. Therefore, the probability of Case A or Case B is [latex]\frac{1}{101}+\frac{1}{101}=\frac{2}{101}[/latex]. The probability that you will get the Ace of Diamonds and a black card when drawing two cards from a deck is [latex]\frac{2}{101}[/latex].

These two playing card scenarios are discussed further in the following video.

Try It

Example

A home pregnancy test was given to women, then pregnancy was verified through blood tests.  The following table shows the home pregnancy test results.

Find

  1. P(not pregnant | positive test result)
  2. P(positive test result | not pregnant)
Positive testNegative testTotalPregnant70474Not Pregnant51419Total751893

Show Solution

  1. Since we know the test result was positive, we’re limited to the 75 women in the first column, of which 5 were not pregnant. P(not pregnant | positive test result) = [latex]\frac{5}{75}\approx0.067[/latex].
  2. Since we know the woman is not pregnant, we are limited to the 19 women in the second row, of which 5 had a positive test. P(positive test result | not pregnant) = [latex]\frac{5}{19}\approx0.263[/latex]

The second result is what is usually called a false positive: A positive result when the woman is not actually pregnant.

What is the probability of getting a non ace?

Hence the probability of getting a non-ace card is 12/13.

What is the probability of a card being an ace given that it is a non

The probability of it being an Ace given it is a Non-face card uses the conditional formula: Note, that in a standard deck of 52 cards, there are 12 face cards, so 40 non-face cards. Of those non-face cards, there are only 4 Aces.

What is the probability that the card is an ace?

The probability of getting an ace is 1/52.

What is the probability of picking a non

Therefore, there are 12 Face cards in total (6 red and 6 black), 4 Aces. 4 Kings (2 red and 2 black), 4 Queens (2 red and 2 black). Therefore, the probability of finding a non-face card in a well shuffled deck of 52 playing cards is 1013 .